- new language: go - new shops: cybertek.fr, mediamarkt.ch - deprecated shops: alternate.be, minershop.eu - improved database transaction management - better web parsing library (ferret, requires headless chrome browser) - include or exclude products by applying regex on their names - check for PID file to avoid running the bot twice - hastags are now configurable Signed-off-by: Julien Riou <julien@riou.xyz>
5.2 KiB
RestockBot
Year 2020 has been quite hard for hardware supply. Graphics cards are out of stock everywhere. Nobody can grab the new generation (AMD RX 6000 series, NVIDIA GeForce RTX 3000 series). Even older generations are hard to find. RestockBot
is a bot that crawl retailers websites and notify when a product is available.
Requirements
Headless browser
Use Docker:
docker run --name chromium --rm -d -p 9222:9222 montferret/chromium
Or get inspired by the source code to run it on your own.
Twitter (optional)
Follow this procedure to generate all the required settings:
consumer_key
consumer_secret
access_token
access_token_secret
Installation
Download the latest release.
Ensure checksums are identical.
Then execute the binary:
./restockbot -version
./restockbot -help
Compilation
Clone the repository:
git clone https://github.com/jouir/restockbot.git
Build the restockbot
binary:
make build
ls -l bin/restockbot
Build with the architecture in the binary name:
make release
Eventually remove produced binaries with:
make clean
Configuration
Default file is restockbot.json
in the current directory. The file name can be passed with the -config
argument.
Options:
urls
: list of retailers web pagestwitter
(optional):consumer_key
: API key of your Twitter applicationconsumer_secret
: API secret of your Twitter applicationaccess_token
: authentication token generated for your Twitter accountaccess_token_secret
: authentication token secret generated for your Twitter accounthashtags
: map of key/values used to append hashtags to each tweet. Key is the pattern to match in the product name, value is the string to append to the tweet. For example,{"twitter": {"hashtags": {"rtx 3090": "#nvidia #rtx3090"}}}
will detectrtx 3090
to append#nvidia #rtx3090
at the end of the tweet.
include_regex
(optional): include products with a name matching this regexpexclude_regex
(optional): exclude products with a name matching this regexp
How to contribute
Lint the code with pre-commit:
docker run -it -v $(pwd):/mnt/ --rm golang:latest bash
go get -u golang.org/x/lint/golint
apt-get update && apt-get upgrade -y && apt-get install -y git python3-pip
pip3 install pre-commit
cd /mnt
pre-commit run --all-files
How to parse a shop
Create the Ferret query
RestockBot
uses Ferret and its FQL (Ferret Query Language) to parse websites. The full documentation is available here. Once installed, this library can be used as a CLI command or embedded in the application. To create the query, we can use the CLI for fast iterations, then we'll integrate the query in RestockBot
later.
vim shop.fql
ferret --cdp http://127.0.0.1:9222 -time shop.fql
The query must return a list of products in JSON format with the following elements:
name
: stringurl
: stringprice
: floatprice_currency
: stringavailable
: boolean
Example:
[
{
"available": false,
"name": "Zotac GeForce RTX 3070 AMP Holo",
"price": 799.99,
"price_currency": "EUR",
"url": "https://www.topachat.com/pages/detail2_cat_est_micro_puis_rubrique_est_wgfx_pcie_puis_ref_est_in20007322.html"
},
{
"available": false,
"name": "Asus GeForce RTX 3070 DUAL 8G",
"price": 739.99,
"price_currency": "EUR",
"url": "https://www.topachat.com/pages/detail2_cat_est_micro_puis_rubrique_est_wgfx_pcie_puis_ref_est_in20005540.html"
},
{
"available": false,
"name": "Palit GeForce RTX 3070 GamingPro OC",
"price": 819.99,
"price_currency": "EUR",
"url": "https://www.topachat.com/pages/detail2_cat_est_micro_puis_rubrique_est_wgfx_pcie_puis_ref_est_in20005819.html"
}
]
RestockBot
will convert this JSON to a list of Product
.
Embed the query
Shops are configured as a list of URLs:
{
"urls": [
"https://www.topachat.com/pages/produits_cat_est_micro_puis_rubrique_est_wgfx_pcie_puis_f_est_58-11447,11445,11446,11559,11558.html",
"https://www.ldlc.com/informatique/pieces-informatique/carte-graphique-interne/c4684/+fv121-19183,19184,19185,19339,19340.html",
"https://www.materiel.net/carte-graphique/l426/+fv121-19183,19184,19185,19339,19340/"
]
}
The Parse
function (parser.go) will be called. In this example, the following shop names will be deduced: topachat.com
, ldlc.com
and materiel.net
.
Each shop should implement a function to create a ferret query based on an URL:
func createQueryForLDLC(url string) string
func createQueryForMaterielNet(url string) string
func createQueryForTopachat(url string) string
- ...
This function should be added to the switch of the createQuery
function (parser.go).
Products will then be parsed.
Disclaimer
Crawling a website should be used with caution. Please check with retailers if the bot respects the terms of use for their websites. Authors of the bot are not responsible of the bot usage.